Hash Viewer
# Title or Header 1 > Hash Viewer lets you display and share Markdown, HTML, and rendered math (TeX) without any server side-components. It works by storing page content in the URL. > > — Matthew Wildrick Thomas ## Section (formatting) Write **bold**, *italic*, ***bold italic***, ~~strikethrough~~, or
underline
(HTML), Escape: \*, Link: [a link](https://mwt.me). ### 1.1. Subsection Sections aren't auto-numbered. Number manually. --- #### 1.1.1. Lists Heading levels go down to `######`. ##### Supported: * Tables * Math in TeX form with `$$`,`$` * Environments for theorems, proofs, and definitions * HTML including inline SVG ##### *Not* supported: 1. Footnotes 2. `{.class #id}` attributes * Use HTML instead 3. Code syntax highlighting #### 1.1.2. Tables | Tables | Are | Supported | | ------------ | --------- | ------------- | | this table | cool | *italic* | | other tables | also cool | **bold** | | no tables | bad | ~~alignment~~ | #### 1.1.3. Code blocks ``` def f(x): return "f(" + str(x) + ")" ``` #### 1.1.4. Math Use `$$` for display math and `$` for inline math. E.g., $$ \int_0^1 f(x)\,dx = \lim_{n\to\infty} \sum_{t=1}^n f \left( \frac{t}{n} \right) \frac{1}{n} $$ holds for any continuous $f$ on $[0,1]$. #### 1.1.5. Theorems and proofs
The integral of a linear function is given by $$ \int_0^1 m x\,dx = \frac{m}{2}. $$
Recall for any continuous function, $$ \int_0^1 f(x)\,dx = \lim_{n\to\infty} \sum_{t=1}^n f \left( \frac{t}{n} \right) \frac{1}{n}. $$ Then, $$ \begin{align*} \int_0^1 m x\,dx &=\lim_{n\to\infty}\sum_{t=1}^n\frac{m t}{n}\frac{1}{n} \\ &=\lim_{n\to\infty}\frac{m}{n^2}\cdot\sum_{t=1}^n t \\ &=\lim_{n\to\infty}\frac{m}{n^2}\cdot\frac{n(n+1)}{2} \\ &=\lim_{n\to\infty}\left(\frac{m}{2}+\frac{m}{2n}\right)=\frac{m}{2}. \end{align*} $$
Clear
Small link
Submit